9 research outputs found

    Synthesizing Speech from Intracranial Depth Electrodes using an Encoder-Decoder Framework

    Full text link
    Speech Neuroprostheses have the potential to enable communication for people with dysarthria or anarthria. Recent advances have demonstrated high-quality text decoding and speech synthesis from electrocorticographic grids placed on the cortical surface. Here, we investigate a less invasive measurement modality in three participants, namely stereotactic EEG (sEEG) that provides sparse sampling from multiple brain regions, including subcortical regions. To evaluate whether sEEG can also be used to synthesize high-quality audio from neural recordings, we employ a recurrent encoder-decoder model based on modern deep learning methods. We find that speech can indeed be reconstructed with correlations up to 0.8 from these minimally invasive recordings, despite limited amounts of training data

    Decoding executed and imagined grasping movements from distributed non-motor brain areas using a Riemannian decoder

    Get PDF
    Using brain activity directly as input for assistive tool control can circumventmuscular dysfunction and increase functional independence for physically impaired people. The motor cortex is commonly targeted for recordings, while growing evidence shows that there exists decodable movement-related neural activity outside of the motor cortex. Several decoding studies demonstrated significant decoding from distributed areas separately. Here, we combine information from all recorded non-motor brain areas and decode executed and imagined movements using a Riemannian decoder. We recorded neural activity from 8 epilepsy patients implanted with stereotactic-electroencephalographic electrodes (sEEG), while they performed an executed and imagined grasping tasks. Before decoding, we excluded all contacts in or adjacent to the central sulcus. The decoder extracts a low-dimensional representation of varying number of components, and classified move/no-move using a minimum-distance-to-geometric-mean Riemannian classifier. We show that executed and imagined movements can be decoded from distributed non-motor brain areas using a Riemannian decoder, reaching an area under the receiver operator characteristic of 0.83 ± 0.11. Furthermore, we highlight the distributedness of the movement-related neural activity, as no single brain area is the main driver of performance. Our decoding results demonstrate a first application of a Riemannian decoder on sEEG data and show that it is able to decode from distributed brain-wide recordings outside of the motor cortex. This brief report highlights the perspective to explore motor-related neural activity beyond the motor cortex, as many areas contain decodable information

    Continuously Decoding Grasping Movements using Stereotactic Depth Electrodes

    Get PDF
    Brain-Computer Interfaces (BCIs) that decode a patient's movement intention to control a prosthetic device could restore some independence to paralyzed patients. An important step on the road towards naturalistic prosthetic control is to decode movement continuously with low-latency. BCIs based on intracortical micro-arrays provide continuous control of robotic arms, but require a minor craniotomy. Surface recordings of neural activity using EEG have made great advances over the last years, but suffer from high noise levels and large intra-session variance. Here, we investigate the use of minimally invasive recordings using stereotactically implanted EEG (sEEG). These electrodes provide a sparse sampling across many brain regions. So far, promising decoding results have been presented using data measured from the subthalamic nucleus or trial-to-trial based methods using depth electrodes. In this work, we demonstrate that grasping movements can continuously be decoded using sEEG electrodes, as well. Beta and high-gamma activity was extracted from eight participants performing a grasping task. We demonstrate above chance level decoding of movement vs rest and left vs right, from both frequency bands with accuracies up to 0.94 AUC. The vastly different electrode locations between participants lead to large variability. In the future, we hope that sEEG recordings will provide additional information for the decoding process in neuroprostheses

    Biomarkers Can Identify Pulmonary Tuberculosis in HIV-infected Drug Users Months Prior to Clinical Diagnosis

    Get PDF
    Background: Current diagnostic tests cannot identify which infected individuals are at risk for progression to tuberculosis (TB). Our aim was to identify biomarkers which can predict the development of TB prior to clinical diagnosis. Method: In a retrospective case–control study, RNA of 14 HIV-infected drug users obtained before TB diagnosis (cases) and of 15 who did not develop TB (controls) was analyzed for the expression of 141 genes by dcRT-MLPA followed by Lasso regression analysis. Findings: A combined analysis of IL13 and AIRE had the highest discriminatory power to identify cases up to 8 months prior to clinical diagnosis. Cases expressing IL13 had a gene expression pattern strongly enriched for type I IFN related signaling genes, suggesting that these genes represent processes that contribute to TB pathogenesis. Interpretation: We here demonstrated that biomarkers, such as IL13-AIRE, can identify individuals that progress to TB within a high risk population, months prior to clinical diagnosis

    Dataset of Speech Production in intracranial.Electroencephalography

    Get PDF
    Measurement(s) Brain activity Technology Type(s) Stereotactic electroencephalography Sample Characteristic - Organism Homo sapiens Sample Characteristic - Environment Epilepsy monitoring center Sample Characteristic - Location The Netherland

    Executed and imagined grasping movements can be decoded from lower dimensional representation of distributed non-motor brain areas

    No full text
    Using brain activity directly as input for assistive tool control can circumvent muscular dysfunction and increase functional independence for physically impaired people. Most invasive motor decoding studies focus on decoding neural signals from the primary motor cortex, which provides a rich but superficial and spatially local signal. Initial non-primary motor cortex decoding endeavors have used distributed recordings to demonstrate decoding of motor activity by grouping electrodes in mesoscale brain regions. While these studies show that there is relevant and decodable movement related information outside the primary motor cortex, these methods are still exclusionary to other mesoscale areas, and do not capture the full informational content of the motor system. In this work, we recorded intracranial EEG of 8 epilepsy patients, including all electrode contacts except those contacts in or adjacent to the central sulcus. We show that executed and imagined movements can be decoded from non-motor areas; combining all non-motor contacts into a lower dimensional representation provides enough information for a Riemannian decoder to reach an area under the curve of 0.83 ± 0.11. Additionally, by training our decoder on executed and testing on imagined movements, we demonstrate that between these two conditions there exists shared distributed information in the beta frequency range. By combining relevant information from all areas into a lower dimensional representation, the decoder was able to achieve high decoding results without information from the primary motor cortex. This representation makes the decoder more robust to perturbations, signal non-stationarities and neural tissue degradation. Our results indicate to look beyond the motor cortex and open up the way towards more robust and more versatile brain-computer interfaces

    Predicting mortality of individual patients with COVID-19: A multicentre Dutch cohort

    No full text
    Objective Develop and validate models that predict mortality of patients diagnosed with COVID-19 admitted to the hospital. Design Retrospective cohort study. Setting A multicentre cohort across 10 Dutch hospitals including patients from 27 February to 8 June 2020. Participants SARS-CoV-2 positive patients (age ≥18) admitted to the hospital. Main outcome measures 21-day all-cause mortality evaluated by the area under the receiver operator curve (AUC), sensitivity, specificity, positive predictive value and negative predictive value. The predictive value of age was explored by comparison with age-based rules used in practice and by excluding age from the analysis. Results 2273 patients were included, of whom 516 had died or discharged to palliative care within 21 days after admission. Five feature sets, including premorbid, clinical presentation and laboratory and radiology values, were derived from 80 features. Additionally, an Analysis of Variance (ANOVA)-based data-driven feature selection selected the 10 features with the highest F values: age, number of home medications, urea nitrogen, lactate dehydrogenase, albumin, oxygen saturation (%), oxygen saturation is measured on room air, oxygen saturation is measured on oxygen therapy, blood gas pH and history of chronic cardiac disease. A linear logistic regression and non-linear tree-based gradient boosting algorithm fitted the data with an AUC of 0.81 (95% CI 0.77 to 0.85) and 0.82 (0.79 to 0.85), respectively, using the 10 selected features. Both models outperformed age-based decision rules used in practice (AUC of 0.69, 0.65 to 0.74 for age >70). Furthermore, performance remained stable when excluding age as predictor (AUC of 0.78, 0.75 to 0.81). Conclusion Both models showed good performance and had better test characteristics than age-based decision rules, using 10 admission features readily available in Dutch hospitals. The models hold promise to aid decision-making during a hospital bed shortage

    Klinisch beloop van covid-19 in Nederland: Een overzicht van 2607 ziekenhuispatiënten uit de eerste golf

    No full text
    OBJECTIVE: To systematically collect clinical data from patients with a proven COVID-19 infection in the Netherlands. DESIGN: Data from 2579 patients with COVID-19 admitted to 10 Dutch centers in the period February to July 2020 are described. The clinical data are based on the WHO COVID case record form (CRF) and supplemented with patient characteristics of which recently an association disease severity has been reported. METHODS: Survival analyses were performed as primary statistical analysis. These Kaplan-Meier curves for time to (early) death (3 weeks) have been determined for pre-morbid patient characteristics and clinical, radiological and laboratory data at hospital admission. RESULTS: Total in-hospital mortality after 3 weeks was 22.2% (95% CI: 20.7% - 23.9%), hospital mortality within 21 days was significantly higher for elderly patients (> 70 years; 35, 0% (95% CI: 32.4% - 37.8%) and patients who died during the 21 days and were admitted to the intensive care (36.5% (95% CI: 32.1% - 41.3%)). Apart from that, in this Dutch population we also see a risk of early death in patients with co-morbidities (such as chronic neurological, nephrological and cardiac disorders and hypertension), and in patients with more home medication and / or with increased urea and creatinine levels. CONCLUSION: Early death due to a COVID-19 infection in the Netherlands appears to be associated with demographic variables (e.g. age), comorbidity (e.g. cardiovascular disease) but also disease char-acteristics at admission
    corecore